翻訳と辞書
Words near each other
・ Ellipsoid Hill
・ Ellipsoid method
・ Ellipsoidal coordinates
・ Ellipsoidal reflector spotlight
・ Ellipsometry
・ Ellipsoolithus
・ Ellipsoptera
・ Ellipsuella
・ Ellipta
・ Elliptera
・ Ellipteroides
・ Elliptic algebra
・ Elliptic boundary value problem
・ Elliptic cohomology
・ Elliptic complex
Elliptic coordinate system
・ Elliptic curve
・ Elliptic curve cryptography
・ Elliptic curve Diffie–Hellman
・ Elliptic Curve Digital Signature Algorithm
・ Elliptic curve only hash
・ Elliptic curve point multiplication
・ Elliptic curve primality
・ Elliptic cylindrical coordinates
・ Elliptic divisibility sequence
・ Elliptic filter
・ Elliptic flow
・ Elliptic function
・ Elliptic gamma function
・ Elliptic Gauss sum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Elliptic coordinate system : ウィキペディア英語版
Elliptic coordinate system

In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which
the coordinate lines are confocal ellipses and hyperbolae. The two foci
F_ and F_ are generally taken to be fixed at -a and
+a, respectively, on the x-axis of the Cartesian coordinate system.
==Basic definition==

The most common definition of elliptic coordinates (\mu, \nu) is
:
x = a \ \cosh \mu \ \cos \nu

:
y = a \ \sinh \mu \ \sin \nu

where \mu is a nonnegative real number and \nu \in (2\pi ).
On the complex plane, an equivalent relationship is
:
x + iy = a \ \cosh(\mu + i\nu)

These definitions correspond to ellipses and hyperbolae. The trigonometric identity
:
\frac \cosh^ \mu} + \frac \sinh^ \mu} = \cos^ \nu + \sin^ \nu = 1

shows that curves of constant \mu form ellipses, whereas the hyperbolic trigonometric identity
:
\frac \cos^ \nu} - \frac \sin^ \nu} = \cosh^ \mu - \sinh^ \mu = 1

shows that curves of constant \nu form hyperbolae.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Elliptic coordinate system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.